FACULTY OF ENGINEERING & TECHNOLOGY

First Year Master of Technology

Semester I

Course Code: 102380103

Course Title: Advanced Food Refrigeration System

Type of Course: Program Elective I

Course Objectives: Develop competence in technology and operation of VCRS and VARS for food applications. Understand and develop ability to select non-conventional food refrigeration systems. Acquaint with practical design considerations of key refrigeration controls and components. To gain knowledge of food freezing systems and applications. To obtain knowledge of cold storage and transport technology for foods

Teaching & Examination Scheme:

Contact hours per week		Course	Exam	ination Ma	arks (Maxi	mum / Pa	ssing)	
Locturo	Tutorial	Practical	Credits	Inte	rnal	Exte	rnal	Total
Lecture	Tutoriai	Practical		Theory	J/V/P*	Theory	J/V/P*	Total
3	0	2	4	30 / 15	20 / 10	70 / 35	30 / 15	150/75

^{*} J: Jury; V: Viva; P: Practical

Detailed Syllabus:

Sr.	Contents	Hours			
1	Performance aspects and cycle modifications in actual vapour compression	5			
	refrigeration systems for food applications. Multi-Stage vapour compression				
	refrigeration systems for food products, Methods for improving COP.				
2	Steady flow analysis of vapour absorption refrigeration system (Ammonia-Water).	5			
	Pumpless absorption refrigeration systems-Triple Fluid Vapour Absorption				
	Refrigeration System (TFVARS) or Platen-Munter's system, Solar energy based				
	sorption refrigeration systems for food and allied materials.				
3	Heat Pumps: different 'heat pump circuits', analysis of heat pump cycle,	4			
	Applications of heat pumps for food and agro products.				
4	Non-conventional food refrigeration systems: Steam jet refrigeration, Thermo	4			
	electric refrigeration, vortex tube, cooling by adiabatic demagnetization, air				
	refrigeration cycles.				
5	Practical design considerations of key refrigeration components for agro-produce:	4			
	Compressor, Expansion valves, Analysis of condensers ~ Optimum condenser				
	pressure for lowest running cost. Thermal design of evaporators ~ Enhancement of				
	heat transfer coefficients				
6	Food Freezing System: Effect of temperature on food spoilage, Freezing equipment,	5			
	Freezing kinetics, Freezing time and its effect of texture and quality of foods,				
	Freezer types, Blast freezers, Contact plate freezers, Individual quick freezing.				
	Cryogenic freezing of foods, Freezing practice as applied to marine foods, meat and				
	poultry, fruits and vegetables. Quality and stability of frozen fruits and vegetables.				

(Established under Gujarat Private Universities
(Second Amendment) Act : 2019 Gujarat Act No. 20 of 2019)

7	Classification of commercial cold storages, practices, stacking & handling of food &			
	agro-products in cold rooms, types of cooling loads and their calculation, design			
	and construction of cold storage for perishable food products.			
8	Fundamentals of control and maintenance of commercial food refrigeration	4		
	systems: Pressure regulating valves, Thermostatic valves, LP/ HP cut outs, high to			
	low side bypass valve, condenser water regulating valve, capacity control devices,			
	defrosting methods, liquid charging.			
9	Refrigerated food transport systems: Introduction, cold chain, principles and	3		
	practice.			

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks			y Mark	S	R: Remembering; U: Understanding; A: Application,	
R	U	A	N	E	С	N: Analyze; E: Evaluate; C: Create
10	20	20	15	20	15	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

1	Suvendu Bhattacharya, Chapter 13, Refrigeration in Food Production and Processing			
2	Singh RP and Heldman DR.1993, 2003, 2009. Introduction to food engineering. Academic			
	press 2nd, 3rd and 4th edition			
3	Tressler , D.K. , Van Arsdel , W.B. , Copley , M.J. and Woolrich , W.R. (1968). The Freezing			
	Preservation of Foods. The Avi Publishing Co. , Westport			
4	Van Arsdel , W.B. , Copley , M.J. and Olson , R.L. (1969). Quality and Stability of Frozen Foods.			
	Wiley Interscience , New York			
5	Frozen Food Science and Technology, Judith A. Evans Food Refrigeration and Process Engineering Research			
	Centre (FRPERC) University of Bristol, UK			
6	Gunther Raymond C. 1957. Refrigeration and Air-conditioning and Cold Storage. Chilton Co			
7	Andrew D Althhouse & Carl H. Turnquist 1958. Modern Refrigeration and Air-conditioning.			
	Good Heart Wilcox Co			

Course Outcomes (CO):

course outcomes (co).					
Sr.	Course Outcome Statements	%weightage			
CO-1	Develop competence in technology and operation of VCRS and VARS for	25			
	foods.				
CO-2	Understand and develop ability to select non-conventional food	15			
	refrigeration systems				
CO-3	Acquaint with practical design considerations of key refrigeration	20			
	controls and components				
CO-4	To gain knowledge of food freezing systems and applications	25			
CO-5	To obtain knowledge of cold storage and transport technology for foods.	15			

List of Practicals / Tutorials:Click or tap here to enter text.

1	To determine the COP of VAR system (Elertolux Refrigeration System)
2	To acquaint with Refrigerated food transport systems: Introduction, cold chain, principles and practice.
3	To find out cooling and humidification process parameters for green and leafy vegetables and plot the same on psychrometric chart.
4	To find and compare the theoretical and actual COP of a small refrigeration unit on Refrigeration Tutor.
5	Visit to a commercial refrigeration plant for cold storage/ ice bank unit and calculation of its
	theoretical COP by making cycle on P-h chart.
6	Calculation of theoretical work and comparing it with actual work for some specified cooling job in a commercial plant.
7	Study of various control and safety devices in a commercial refrigeration plant.
8	Design problems on cold storage for different food/ dairy products.
9	Use of Computer software specific to cold store AC design
10	Study the working of an actual heat pump system.

Supplementary learning Material:

Holdsworth, D.S. (1987). Physical and engineering aspects of food freezing. In Developments in Food Preservation – 4 (Thorne, S., ed.). Elsevier Applied Science, London

Curriculum Revision:				
Version:	1			
Drafted on (Month-Year):	Apr-20			
Last Reviewed on (Month-Year):	Jul-20			
Next Review on (Month-Year):	Apr-22			